P525/3 Chemistry Paper 3 Jan – Feb 2021 3 ¼ hours

UGANDA MUSLIM TEACHERS' ASSOCIATION

UMTA RESOURCE PAPERS - 2021

Name

Centre/Index No.Signature

UGANDA ADVANCED CERTIFICATE OF EDUCATION

Chemistry

Paper 3

3 hours 15 Minutes

INSTRUCTIONS TO CANDIDATES:

- This paper consists of three compulsory questions.
- All questions must be answered in the spaces provided.
- *Mathematical tables (3 figure tables) and silent non-programmable scientific electronic calculators may be used.*
- Candidates are advised to read through the paper and cross check with the apparatus and chemicals provided in the first fifteen minutes.

For Examiners' use only							
Q. 1	Q. 2	Q. 3	Total				

Q1. You are provided with the following:

- FA₁ which is a solution containing potassiumiodate (KIO₃) and oxalic acid (H₂C₂O₄.H₂O)
- FA₂ which is 0.1M sodium thiosulphate.
- FA₃ which is 0.05M sodium hydroxide solution.

You are required to determine the percentage composition of FA1

Theory:

The hydrogen ion can be analysed by titration with standard base

 $0H^{-}_{(aq)} + H^{+}_{(aq)} \longrightarrow H_2O_{(l)}$

While the iodate ions can be reduced to iodine by reaction with excess acidified potassium iodide.

 $10^{-}_{3 (aq)} + 5I^{-}_{(aq)} + 6H^{+}_{(aq)} \longrightarrow 3 I_{2 (aq)} + 3H_2O_{(l)}$

And the liberated iodine analysed by reaction with standard sodium thiosulphate solution.

 $I_{2 (aq)} + 2S_2O_3^{2-} (aq) \longrightarrow S_4O_6^{2-} (aq) + 2I^- (aq)$

Procedure 1

Pipette 10cm^3 of FA₁ into a conical flask add 2-3 drops of phenolphalein indicator and shake well. Titrate this solution with FA₃ from the burette. Repeat the titration until you obtain consistent readings and record your results in table A.

Results for Table A:

Volume of pipette used _____cm³.

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of FA ₃ used (cm ^{3})		

Values used to calculate average volume of FA3 used. _____, _____

Average volume of FA₃.....

Questions:

(a) Calculate the molar concentration of FA_1 with respect to H^+ ions hence mass per litre of oxalic acid.

Procedure II

Empty the burette, wash it clean and rinse it with distilled water. Then fill it with FA_2 . Pipette **10cm³** of FA₁ into a conical flask, add **10cm³** of **2M** sulphuric acid by use of a measuring cylinder and add 10cm³ of 10% potassium iodide then shake well and titrate the liberated iodine with FA₂ from the burette until the solution is pale yellow. Then add 2cm³ of starch indicator and complete the titration when the blue black colour of the solution just becomes colourless.

Repeat the titration to obtain consistent results and record your results in the table B - below.

Results for Table B:

Volume of pipette used _____cm³.

Final burette reading (cm ³)		
Initial burette reading (cm ³)		
Volume of \mathbf{FA}_2 used (cm ³)		

Values of FA2 used to calculate average volume used _____, ____

Average volume of **FA**₂.....

Questions:

(b) Calculate the molar concentration of FA_1 with respect to IO_3^- ions hence mass per litre of potassium iodate.

	••••	•••	• • • •	•••	• • • •	••••	•••		•••	••••	• • • •	••••		•••	••••	••••	••••	••••	••••	••••	• • • • •		••••	••••	••••	••••	 •••••
•••••	••••	•••	• • • •	••••	• • • •		•••	• • • •	•••	••••	••••	• • • •	••••	••••	• • • •	• • • •	••••	• • • •	••••	••••	• • • • •				••••	••••	 ••••
•••••		•••	• • • •	•••	• • • •	••••	•••		•••		••••		••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••			••••	••••	 ••••
	••••	•••	••••	••••	••••		•••		••••	••••	••••	• • • •		••••	••••		••••		••••	••••	• • • • •				••••	••••	 •••••
•••••	••••		• • • •	•••	••••		•••	••••	••••	••••			••••	••••	• • • •		••••	••••	••••	••••	• • • • •	••••			••••	••••	 ••••
•••••			• • • •	•••	• • • •	••••	•••	••••	•••	••••		••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••			••••	••••	 ••••
•••••			• • • •	•••	• • • •	••••	•••		•••		••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••		••••	••••	••••	 •••••
•••••			• • • •	•••	• • • •	••••	•••		•••		••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••		••••	••••	••••	 •••••
•••••			• • • •	•••	• • • •	••••	•••		•••		••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••		••••	••••	••••	 •••••
•••••			••••	•••	••••		•••		•••					••••		••••	••••	••••		••••	• • • • •				••••	••••	 ••••
		•••	••••	•••	••••	••••	•••		•••					••••		••••	••••		••••	••••	• • • • •				••••	••••	 •••••
				••••	• • • •		•••		••••					••••						••••					••••	• • • •	

(c)	Calculate percentage composition by mass of FA1
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

2. You are provided with substance **E**, that contains <u>two</u> cations and <u>two</u> anions. Carryout the following tests to identify the ions in E. Identify any gas evolved.

TEST	OBSERVATION	DEDUCTION
(a) Heat aspatula endful of E strongly in the dry test tube.		
(b) Place 2 spatula endfuls of E in a test tube, add 3 drops of concentrated sulphuric acid and heat.		
(c) Place two spatula endful of E in a test tube, add water to dissolve and filter, keep the residue. Divide the filtrate into three portions.		
 (i) To the 1st portion, add lead (II) nitrate solution and then dilute nitric acid. 		
(ii) To the 2nd portion, add silver nitrate solution; then dilute nitric acid.		
(iii) To the third portion add bleaching powder and then 3 drops of dilute sulphuric acid solution followed by carbon tetra chloride. Shake and leave it to settle.		
(d) To the spatula endful of E add dilute nitric acid to dissolve, then add excess sodium hydroxide solution and filter. Keep the residue and the filtrate.		

(e) To the filtrate, add dilute nitric acid until it is just acidic and divide the resultant	
solution into three portions.	
(i) To the first portion, add sodium hydroxide solution dropwise until in excess.	
(ii) To the second portion add	
aqueous ammonia till in excess.	
(iii) Using the third portion carryout a test of your own	
choice to confirm the cation in the filtrate.	
·····	
(f) To the residue in (d) add dilute nitric acid to dissolve. Divide the resultant solution	
into four parts.	
(i) To the first part, add sodium hydroxide dropwise until in excess.	
(ii) To the second part, add aqueous ammonia solution dropwise until in excess.	
aropwise until ill excess.	

(iii) To the third part, add dilute sulphuric acid	
(iv) To the fourth part, add, ammonium oxalate solution followed by ethanoic acid	

- Cations in **E** areandandand
- 3. You are provided with solid **T** which is an organic compound. You are required to carry out the tests below to determine the nature of **T**.

TEST	OBSERVATIONS	DEDUCTIONS
(a) Burn a little of T on		
aspatula end.		
(b) Add sodium hydroxide		
solution to a little of T in a test		
tube and shake well.		
(c) To a little of T in a test		
tube add about 5 cm^3 of water		
and heat. Test the mixture		
with litmus paper. Divide the		
mixture into five parts.		
(i) To the first part add		
(i) To the first part, add sodium carbonate solution.		
Sourdani euroonate soutron.		

(ii) To the second part, add neutral iron (III) chloride solutions.	
(iii) To the third part add Bradys reagent	
iv. To the fourth part add sodium hydroxide solution then three drops of concentrated sulphuric acid followed by ethanoic acid and warm. Pour the mixture in cold water.	
v. To the fifth part add an equal volume of ethanol and then three drops of concentrated sulphuric acid and warm.	

Comment on the nature of T.

.....

.....

End